A stress-free sample holder for low-temperature studies

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
(http://iopscience.iop.org/0022-3735/12/5/003)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 128.103.149.52
The article was downloaded on 20/12/2010 at 18:51

Please note that terms and conditions apply.
Also the velocity-induced skewness \(S = \frac{T_m^3}{T_m^2} \) can be calculated as
\[
S = \frac{3}{2\sqrt{2}} \frac{M\omega}{1 + M^2\omega^2} \leq \frac{3}{4\sqrt{2}} a
\] (10)
where the bar denotes a time average.

From (9) it may be seen that the measured temperature \(T_m \) recovers the ambient temperature \(T_a = \cos \omega t \) but in addition contains a second harmonic with amplitude
\[
a \frac{M\omega}{2(1 + \omega^2 M^2)^{1/2}} \leq \frac{a}{2}
\]
and a velocity-induced mean temperature change
\[
a \frac{M\omega}{2(1 + \omega^2 M^2)^{1/2}} \leq \frac{a}{4}
\]

The second harmonic can exceed 5% of the fundamental if \(a > 0.1 \), corresponding to velocity fluctuations larger than 20%. This is less serious than the corresponding generation of a second harmonic in a frequency-compensated constant-current anemometer by large velocity fluctuations. Furthermore, while the constant-current anemometer contains algebraic nonlinearities, the thin-wire resistance thermometer is, within the framework of this simple theory (equation (1)), inherently linear.

Acknowledgment
The cooperation of TSI, Inc. is gratefully acknowledged.

References
Comte-Bellot G and Schon P 1969 Harmoniques crees par excitation parametrique dan les anemometres a fil chaud a intensite constante Int. J. Heat Mass Transfer 12 1661–77
Freymuth P 1978 Extension of the nonlinear theory to constant-temperature hot-film anemometers Thermo-Systems Inc. Q. 4 No. 3–6
Mikhailov M D 1965 Measuring the temperature of flows with a pulsating velocity Meas. Tech. 1 419–22

A stress-free sample holder for low-temperature studies

J D Thompson† and F Habbal‡
Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA

Received 29 September 1978, in final form 13 November 1978

Abstract We describe a simple sample holder for low-temperature experiments which was constructed to reduce stresses placed on samples by thermal cycling.

1 Introduction
It is known that stresses affect the transport properties of metals (e.g. Bass 1972). In particular, stresses arising from thermal cycling of a sample which is clamped to a holder made from a material having a thermal expansion coefficient different from that of the sample can influence significantly the sample properties to be measured.

The sample holder described in this note was used in a study of the flux flow resistance in type II (lead alloy) superconductors (Thompson 1975, Habbal 1978). Because these samples were very thin, \(10^{-4} \) m or less, the differential contraction between these samples and an ‘uncompensated’ sample support manifested itself in a slight bowing of the sample due to the larger coefficient of thermal expansion (CTE) of the holder relative to that of the sample. Thermal cycling of samples mounted this way produced a considerable amount of plastic deformation that was revealed in the voltage-current \((V-I)\) characteristic curves of the samples. These effects became negligible when the sample holder described below was used.

2 The sample holder
Figure 1 shows the sample holder. The sample support SS was made from a cryogenically compatible resin rod (Hysol

Figure 1 Drawing of the sample holder. A, holes through which voltage and current leads pass; B, current contacts; C, movable voltage probes; S, sample; R, quartz rods to which the sample support SS is clamped.

† Present address: Los Alamos Scientific Laboratory, Los Alamos, NM, USA.
‡ Present address: Division of Applied Sciences, Harvard University, Cambridge, Mass., USA.
Apparatus and techniques

Corpor. Olean, New York) machined in the shape of half a right-circular cylinder which was then cut in two along its mid-plane. Two holes were drilled along the axis of the two pieces of the support. These pieces were held together by clamping each section to quartz rods R inserted in the longitudinal holes. Clamping points (not shown in figure 1) consisted of an array of holes tapped through the bottom of the sample support such that they extended perpendicularly into the longitudinal holes for the quartz rods. Clamping was achieved by tightening small brass screws, placed in selected tapped holes, against the quartz rods.

Quartz rods were chosen because of their lower CTE relative to the sample or the resin rod. By adjusting the point of clamping along the quartz rods, the combined thermal expansion of an appropriate portion of these rods and that fraction of the resin rod between the clamping point and the end of the rod could be made to match the thermal expansion of the sample. This point can be understood simply by considering the following. We assume that each end of the sample (length \(l \) at room temperature) is attached rigidly to the ends of the sample holder. If \(\alpha_s(T) \) is the temperature-dependent CTE of the sample, then the sample will contract upon cooling, by an amount \(\int_{LT}^{RT} \alpha_s(T) \, dT \) where \(LT \) denotes the low-temperature and \(RT \) the room-temperature limit. For there to be no differential contraction between the sample and the holder, the contraction of the sample must match the combined contraction of the quartz rods between clamping points, \(\int_{LT}^{RT} \alpha_s(T) \, dT \), and that portion of the resin sample holder between the ends of the holder and the clamping points, \((l-r) \int_{LT}^{RT} \alpha_s(T) \, dT \). That is

\[
\int_{LT}^{RT} \alpha_s(T) \, dT = r \int_{LT}^{RT} \alpha_s(T) \, dT + (l-r) \int_{LT}^{RT} \alpha_s(T) \, dT.
\]

To determine the distance between clamping points on the quartz rods, we have

\[
r = \frac{l \int_{LT}^{RT} \alpha_s(T) \, dT - \alpha_s(LT) (l-r)}{\int_{LT}^{RT} \alpha_s(T) \, dT - \alpha_s(LT)}
\]

Provided that the temperature dependences of the CTEs are known, equation (1) can be used to calculate exactly the location of the clamping points. However, in the absence of this information, we can assume to a first approximation that the total contraction upon cooling to liquid helium temperatures is proportional to the room-temperature CTE (Rose-Innes 1973). This assumption is certainly valid for many metals and alloys with the proportionality constant being about 190 (Clark 1968). If we further assume that the proportionality constant is the same for all three components, equation (1) reduces simply to

\[
r \approx l(\alpha_s - \alpha_s(LT))/(\alpha_s - \alpha_s(LT)).
\]

In practice we have found that these assumptions are justified. Assuming typical room-temperature values for \(\alpha_s \) around \(2.9 \times 10^{-6} \, K^{-1} \), \(\alpha_s \approx 6.8 \times 10^{-6} \, K^{-1} \) and \(\alpha_s \approx 7 \times 10^{-6} \, K^{-1} \) (Jensen et al 1962), we find that \(r \approx 0.6 \) for there to be no net stress placed on the sample. Because of the different temperature dependences of the various CTEs and different thermal masses of the constituent materials it is probable that some minimal stress will be present in the sample during cool-down. We have attempted only to account approximately for the integrated thermal contraction between ambient and operating temperatures.

We cycled samples mounted in this ‘compensated’ sample support several times between room and liquid helium temperatures and found no apparent bowing or changes in their \(V-I \) characteristics. We therefore conclude that this sample holder can reduce considerably stresses resulting from thermal cycling.

For our resistivity measurements, the clamps B which hold the sample to the support were made of copper and were used to supply the current to the sample. The voltage signal was detected by two copper probes C which were narrow pins conically shaped in the region of contact with the surface of the sample. The voltage probes were mounted in a track cut along the sample support. These probes could be moved along the foil but held firmly in contact with the sample by a leaf-spring mechanism. The ability to vary the position of the voltage probes permits testing for the existence of any material inhomogeneities.

3 Conclusions

Whereas this sample holder was used successfully for resistivity measurements, the utility of its design could be applied to other low-temperature experiments in which the temperature of the sample is varied and minimum stresses are desired. In addition, the holder could be modified easily to accommodate other than rectangular sample geometries.

Acknowledgments

We would like to thank Dr F Bao for initially suggesting the CTE mismatch compensation technique. This work was supported in part by NASA and USDOE.

References

Bass J 1972 Deviations from Matthiesen’s rule
AdV. Phys. 21 431

Clark A F 1968 Low-temperature thermal expansion of some metallic alloys
Cryogenics 8 282

Habbel F 1978 Influence of local pinning interactions on the flux flow properties of type II superconductors
PhD Thesis University of Cincinnati

Jensen J E, Stewart R B and Tuttle W A 1962 Bubble Chamber Group Selected Cryogenic Data Notebook
Brookhaven National Laboratory

Rose-Innes A C 1973 Low Temperature Laboratory Techniques (New York: Crane) p 95

Thompson J D 1975 Studies of flux motion and pinning in superconductors through flux flow noise measurements
PhD Thesis University of Cincinnati